endobj 228 0 obj endobj endobj << /S /GoTo /D (subsection.15.1.2) >> endobj endobj 556 0 obj 714 0 obj endobj << /S /GoTo /D (subsection.7.4.2) >> endobj endobj endobj /Length 1454 90 0 obj 46 0 obj (Proofs into programs) 314 0 obj endobj endobj << /S /GoTo /D (subsection.5.1.2) >> endobj endobj endobj endstream << /S /GoTo /D (subsection.11.3.1) >> 722 0 obj 438 0 obj (The web of a coherence space) (Terms) (Degree and conversion) 208 0 obj << /S /GoTo /D (subsection.9.3.2) >> endobj endobj << /S /GoTo /D (subsection.A.5.3) >> endobj 390 0 obj endobj endobj (The theorem) 506 0 obj (Idea of the proof) << /S /GoTo /D (subsection.5.2.1) >> endobj endobj 312 0 obj endobj endobj endobj (Trees of branching type U) 372 0 obj endobj endobj 610 0 obj endobj << /S /GoTo /D (section.1.1) >> 652 0 obj 146 0 obj (Tensor product and units) (Subformula Property) 618 0 obj endobj 72 0 obj 674 0 obj (Degree and substitution) << /S /GoTo /D (subsection.14.2.1) >> endobj (Proof nets) << /S /GoTo /D (section.A.3) >> 588 0 obj (Provably total functions) << /S /GoTo /D (section.8.1) >> 616 0 obj << /S /GoTo /D (subsection.9.1.1) >> << /S /GoTo /D (subsection.11.4.3) >> 392 0 obj endobj 92 0 obj 156 0 obj 70 0 obj (Extension to the full fragment) 300 0 obj 88 0 obj (The weak normalisation theorem) 182 0 obj (Reducibility with parameters) endobj /Filter /FlateDecode 36 0 obj << /S /GoTo /D (subsection.5.2.2) >> (Booleans) %���� << /S /GoTo /D (section.4.4) >> endobj endobj << /S /GoTo /D (section.10.3) >> 712 0 obj 456 0 obj endobj endobj Already in his famous \Mathematical problems" of 1900 [Hilbert, 1900] he raised, as the second problem, that of proving the consistency of the arithmetic of the real num- bers. (Expressive power: examples) 356 0 obj << /S /GoTo /D (section.1.2) >> << /S /GoTo /D (subsection.11.4.2) >> endobj (Sequent Calculus) << /S /GoTo /D (section.B.1) >> 12 0 obj 82 0 obj (Empty type) 552 0 obj endobj endobj PDF Infinitary Proof Theory - uni-muenster.de 1. 440 0 obj endobj (The ``identity'' group) 592 0 obj 304 0 obj 102 0 obj 196 0 obj 16 0 obj endobj �@���M(F(�U3��2y7��OLb��;i�2@4���T`(���3����M_��!0Ls�8
qH�
��T(qȠ=SU\�ƥɪ���d!�N�eѱ���� (Lists) (The strong normalisation theorem) (Proof of the theorem) 706 0 obj endobj (Formulation of HA2) 520 0 obj endobj (Reducibility theorem) 378 0 obj In evidence theory, likelihood is assigned to sets, as opposed to probability theory where likelihood is assigned to a probability density function. 528 0 obj 708 0 obj 564 0 obj 512 0 obj endobj 112 0 obj (Identification of deductions) << /S /GoTo /D (section.9.1) >> 724 0 obj 66 0 obj 654 0 obj 546 0 obj 500 0 obj (Proof of the weak normalisation theorem) endobj 278 0 obj endobj 596 0 obj 120 0 obj << /S /GoTo /D (subsection.15.1.3) >> << /S /GoTo /D (section.3.2) >> << /S /GoTo /D (subsection.8.3.2) >> endobj endobj endobj (Integers) << /S /GoTo /D (section.B.3) >> 140 0 obj endobj << /S /GoTo /D (subsection.11.3.2) >> 242 0 obj (Comments) 220 0 obj endobj endobj endobj (Conversions) << /S /GoTo /D (section.11.3) >> 204 0 obj 682 0 obj endobj endobj endobj (Direct sum) 118 0 obj 86 0 obj (Commuting conversions) endobj endobj physicist must study the theory of his apparatus, and the philosopher criticizes reason itself. 40 0 obj endobj 134 0 obj (Linearisation) endobj endobj << /S /GoTo /D (section.12.2) >> 332 0 obj (Representation of the constructors) endobj 418 0 obj 74 0 obj (Representation of simple types) 374 0 obj 340 0 obj (Translation of HA2 into F) 400 0 obj << /S /GoTo /D (subsection.A.1.2) >> (Linearised sum) endobj endobj endobj endobj endobj 412 0 obj endobj (Interpretation) 122 0 obj << /S /GoTo /D (section.14.1) >> (Arrow type) endobj endobj << /S /GoTo /D (subsection.3.1.1) >> endobj (Sequents) 466 0 obj << /S /GoTo /D (subsection.7.1.4) >> endobj (Rigid Embeddings) endobj (The Hauptsatz) 584 0 obj (Stable functions on a flat space) endobj endobj endobj 76 0 obj << /S /GoTo /D (section.10.5) >> << /S /GoTo /D (subsection.A.5.2) >> endobj << /S /GoTo /D (subsection.14.1.2) >> (Definitions) (The calculus) << /S /GoTo /D (subsection.11.5.2) >> << /S /GoTo /D (section.3.3) >> endobj << /S /GoTo /D (subsection.5.1.5) >> 326 0 obj endobj endobj << /S /GoTo /D (subsection.14.1.1) >> 320 0 obj endobj endobj 174 0 obj endobj x�M��j�0D�� endobj (Representable functions) 114 0 obj << /S /GoTo /D (section.6.2) >> << /S /GoTo /D (subsection.A.4.2) >> endobj endobj (The Berry order) 650 0 obj endobj endobj 560 0 obj 170 0 obj 104 0 obj endobj << /S /GoTo /D (section.13.2) >> endobj endobj 14 0 obj endobj 110 0 obj (Cut elimination) 488 0 obj endobj 668 0 obj 482 0 obj endobj 98 0 obj (dI-domains) endobj (The three simplest types) endobj << /S /GoTo /D (subsection.11.5.3) >> 660 0 obj endobj (Classical logic is not constructive) 272 0 obj 232 0 obj (Standard conversions) 80 0 obj 536 0 obj (Lifted sum) 15 0 obj << 688 0 obj << /S /GoTo /D (subsection.2.1.1) >> endobj endobj << /S /GoTo /D (subsection.7.1.2) >> 544 0 obj 516 0 obj endobj << /S /GoTo /D (section.8.5) >> (The algebraic tradition) 490 0 obj GI��/��,Ɛd�S,���x�S�O�24� >> 542 0 obj endobj endobj endobj << /S /GoTo /D (chapter.7) >> << /S /GoTo /D (section.A.4) >> 498 0 obj << /S /GoTo /D (chapter.12) >> 568 0 obj endobj endobj 32 0 obj 598 0 obj The proof, if you haven’t seen it before, is quite tricky but never-theless uses only standard ideas from the nineteenth century. endobj endobj 276 0 obj (General ideas) endobj endobj << /S /GoTo /D (section.15.2) >> endobj << /S /GoTo /D (section.10.6) >> 62 0 obj 124 0 obj 398 0 obj endobj 716 0 obj 168 0 obj endobj 212 0 obj endobj (Examples) endobj endobj 446 0 obj endobj 22 0 obj << /S /GoTo /D (subsection.7.3.1) >> 274 0 obj endobj endobj endobj (Coherence Spaces) endobj (Lambda Calculus) 402 0 obj (Terms) stream endobj m������_��7�gZ� endobj endobj endobj endobj endobj endobj (Total recursive functions) endobj << /S /GoTo /D (subsection.15.2.3) >> << /S /GoTo /D (section.A.6) >> << /S /GoTo /D (subsection.A.5.1) >> The notes would never have reached the standard of a book without the interest taken in translating (and in many cases reworking) them by Yves Lafont and Paul Taylor. << /S /GoTo /D (section.3.5) >> endobj << /S /GoTo /D (section.B.2) >> << /S /GoTo /D (chapter.4) >> endobj << /S /GoTo /D (chapter.14) >> endobj (The associated functional calculus) 266 0 obj << /S /GoTo /D (section.10.2) >> (The calculus) endobj endobj endobj << /S /GoTo /D (subsection.7.4.1) >> (Atomic types)
Olympian Torch Staff,
Outdoor Folding Rocking Chair,
Lenovo Legion 5 Ryzen 5,
Summer Dessert Recipes With Cream Cheese,
National Multiple Sclerosis Society Logo,
Understanding Basic Statistics 8th Edition Answer Key,
Chrono Cross How Many Endings,